2 o BUZZWORD
PYthon cOMPLIANCE

Noftes

* Charles Merriam

* Cell: 408.368.6050

* Email: charles.merriam@gmail.com
* Blog: http://charlesmerriam.com/blog

* Copy of this talk:
http://charlesmerriam.com/talk

* Yes, you can have this talk given to your group.
Email me.

* 3 Slides Per Buzzword

* High Signal To Noise

* Breadth Over Depth

* About EXPLORING Python

Buzzword Compliance

* All are part of Python

Noftes

* This talk rapidly covers a lot of buzzwords. For
each buzzword covered, many are not covered.

* | hope to provide useful information in the time
allocated. That is, “a high signal to noise ratio.”

* | hope to provide some map for how to explore

Python, leaving the additional details to your
exploration.

LEARNING
PYTHON

* The Quick Reference Sheet
* Python Tutorial

* Python Challenge

* A Cycle of Learning

Learning Python

USE NEW TOOLS

FXPl| ORF | IRRARIFS

Links

* Yes, this slide has the most links, 10 pages!

* Richard Gruet's Python Quick Reference Sheet
* http://rgruet.free.fr/PQR25/PQR2.5.html

— Great reference guide to the language and syntax

- Online version includes direct links to most of the
documentation

— Read once, and then keep a link to it open

Links

* Bruce Eckel's Why | Love Python Presentation

* http://www.mindview.net/Books/Python/ThinkinginPython.
html

— A powerpoint of why he loves Python
— Compares philosophy with other languages

— Mostly using cartoons

Links

* Python Tutorial
* http://docs.python.org/tut/

— Guido van Rossum's basic tutorial

— Walks through syntax of Python using code
examples and text.

— Covers the language and a brief tour of the
standard library.

Links

* Code Like a Pythonista

* http://python.net/~goodger/projects/pycon/2007/idiomatic/
handout.html

— Covers the Zen of Python, tricks, and idioms

— Many useful idioms in Python take some practice to
get right.

— A useful guide for those coming to Python from
another language.

Links

* Dave Kuhiman's Python 201

* http://www.rexx.com/~dkuhlman/python_201/python_201.
html

— A talk covering different patches, like this Buzzword
Compliance talk, but different topics

— Looks at Regular Expressions, Testing, Embedding,
Parsing and GUlIs.

— Definitely worth a look.

Links

* Awarelek Tutorials Page

* http://www.awaretek.com/tutorials.html
— Contains hundreds of tutorials categorized by
subject matter
— Fast way to get more information on some particular
topic

— Not everything is best or relevant, but everything is
here

Links

* Advanced Python (or Understanding Python)

* http://www.charlesmerriam.com/blog/?p=48

- Video explains how namespaces are built at
runtime

- Goes into iterators, decorators, and metaclasses
— Covers both the advanced topics and underlying
simplicity

— Write up has time-line by topic

Links

* Python Challenge

* http://www.pythonchallenge.com/

— Puzzles for Python Programmers
- You write code to find the next level

— Becomes 'guess the buzzword' after six or seven
levels.

Links

* Python Debugger

* http://docs.python.org/lib/module-pdb.html
— A module in the standard library for debugging

— Your IDE may give you a better interface

* PyChecker

* http://pychecker.sourceforge.net/

— A light, "lint" tool for Python

— Can find some common errors

Links

* WingWare IDE

* http://wingware.com/

— A well recommended closed-source Python IDE

- There is a minimal free version

* Plug-ins exist for GEdit, Emacs, Vi, Eclipse, and
everything else

— Google is your friend.

Noftes

* The key aspect is to not neglect any one of
these activities for too long.

* Even when in the midst of a project, explore
libraries and tools. It may save you time.

LIST
COMPREHENSIONS

* A Cool Idiom of Python
* Enables Conciseness
* Obviates map, filter, reduce

* Unrolls into Simple Loops

lost = sum([c.billed - c.paid C

customers c.1s deadbeat()]
1 =1]
C customers:

c.1s deadbeat():
l.append(c.billed - c.paid)
lost = sum(l)

Noftes

— Nothing magical, this is just a shorter way of writing
common idioms we all have written a million times.

- Python often uses the idea of “equivalent to longer
code” to keep the language simple.

— After a week, you will never do without them.
* Python Tutorial on List Comprehensions

— http://docs.python.org/tut/node7.html

— walks through a few examples in section 5.1.4

Noftes

* For extra fun points:

— list comprehensions use a list
— list comprehensions return a list
— S0, list comprehensions can be nested.

— S0, you too can make unreadable code

EXECUTING
MODULES

* Import runs code, once.
* defis just a statement
* Use to precalculate stuff

* Python just runs scripts in
namespaces

“Hello from C”
help make table(size):

c _table = help make table(64)
help make table

Noftes

— The system remembers which classes and modules
have been executed.

— .PYC files are simply tokenizers to speed loading.
They don't pre-execute.

— The "def func():" statement places an entry func
into the local namespace.

— The namespace is just a dictionary (dict).

— Function names are just variables like any other.

Links

* Advanced Python (or Understanding Python)
Video (again)

* http://video.google.com/videoplay?
docid=7760178035196894549

— At 4:15, talks about Python's execution in
namespaces.

— At 8:45, walks through an equivalent example of
executing with a temporary method in a class.

DECORATORS

* Wraps methods with new
functionality

* Useful for logging, security, etc.
* Clean Syntax for use

* Unrolls to simple code

decorator decorator
@decorator
trace(f, *args, **kw):

"call %s with args %s,
% (f.func name, args, Kkw)

f(*args, **kw)

dtrace

buggy function(a, b, c)

notes

* A decorator does something, then (usually)
calls your function.

* This is another Python 'equivalent code' trick:

- @trace
— def myFunc(): print “Hello”

* Is equivalent to:

— def myFunc(): print “Hello”

— myFunc = trace(myFunc())

notes

* Best used when the function and the decorator
are solving distinct problems.

* Avoid the Java file types thing where decorators
are confused with subclassing.

* Boilerplate code for decorators is required
unless you use @decorator.

* Still need bollerplate to pass extra parameters
to your decorator, e.g., @check_level(ADMIN)

lINnks

* Michelle Simionato's Decorator Decorator

* http://www.phyast.pitt.edu/~micheles/python/documentati
on.html

— Provides good @decorator syntax for writing
decorators

— Correctly identifies name and number of arguments
of decorated function in IDEs and other tools.

— You will probably never write a decorator without
this package again.

lINnks

* David Mertz's Decorator Tutorial

* http://www-128.ibm.com/developerworks/linux/library/I-
cpdecor.html?ca=drs-#resources

— A good walk through of Decorators, their uses, and
their pitfalls

- Introduces Michelle Simionato's Decorator
Decorator

commentary

"'his moon introduces the “dark side” of Python.
'hese are areas, in my own opinion, where the
Python languages gains opportunities for
significant improvement. The characterization
of these areas as “dark side” is an opinion, and
you may form different opinions.

b METACLASSES

* The superclass 'type' of classes
* Changes functionality of Python
* Adds complexity to entire project

* Shiny things can be traps

Midnight Hack(type):

__new (cls, name, bases, ats):
a,v ats.items():

post-process ats...

type. new (cls, name,
bases,ats)

Innocent PEP 3115(P3000):

metaclass = Midnight Hack

Noftes

* Mechanically, the 'type' object is a metaclass.
You can write your own metaclass to get handle
class creation and instantiation. You then
specify a class use a particular metaclass.

* You can add in new name swizzling, make
Aspect oriented programming

* Changes Python. Code readers and some
tools are no longer sure what a line of code

does.

Noftes

* Using metaclasses adds to the complexity of
your project, even though it shouldn't.

* Should be a company level or project level
decision.

* Hang rogue programmers by toes if they insist
on metaclasses for trivial reasons.

lINnks

* David Mertz's Metaclass Tutorial
* http://www.ibm.com/developerworks/linux/library/|-
pymeta.htmi

* http://www.ibm.com/developerworks/linux/library/I-
pymetaz2/

* http://www.ibm.com/developerworks/linux/library/|-
pymeta3.html

— A long overview of metaclasses, more than you
might want to know.

* Very few uses for metaclasses

[13]%
H 77 >
mo)
?n?#;'ii.‘l ICO
| DE

7
? F a3 ()
sohowra ¥ '.E1??
a8+ 1 4
- @ |
L I
? [

* Represents every human
language

* Breaks all ASCII rules
* Designed by Committee

* Real world adds constraints

UNICODE Jargon includes: Universal Character Set; The Unicode Standard book;
character encodings; enumerate properties; text normalization; decomposition;
collation; bidirectional display order; Unicode Consortium; Ligatures; orthographic
rules; sidebearing; macron; WGL-4; Multilingual European Subsets MES-1/2/3a/3b;
replacement character; LastResort font; UTF-8; codec.open(); ISO 14755;

CO0 and C1 control codes; Han unification versus TRON; GB-18030;

Binary Ordered Compression; Basic Multilingual Plane; UnicodeDecoderError on
str.encode() contrasted with UnicodeEncoderError on str.decode(); endianness
external metadata; PunyCode; graphemes; syllabaries; ConScript Unicode Registry;
Universal Transformation Format versus Universal Character Set mappings; Private
Use Area; Hangul Jamo; radicals

* Just “make peace” with Unicode

Noftes

* All languages:

— Everything is represented. Umlat's, glyphs, weird
directions, different widths. English, French,
(Hebrew's right to left with a different alphabet).
Sanscrit. Klingon. Elvish.

— Representation as sequence of bytes is a separate
encoding issue. Many use UTF-8, which takes one
byte for Latin languages and many for Asian
languages. Encoding is out of band of text.

Noftes

* Old programmers must grok Unicode:

— Used to plan on uniform character widths, heights,
and direction for layout.

— Used to have a unigue character for output and be
able to glance at screen to determine which
character was output.

— Used to ranges encompassing groups, like all
lowercase characters being contiguous.

— String comparisons must be more careful.

Notes

* Unicode Standards Committees

* http://unicode.org/

— High paying members alter standards for corporate
strategies and tactics.

— Official and unofficial sources and variants.
— Official sources cost money.

— Scheduled face-to-face meetings and conference
calls instead of implementation or chat driven.

— Very unlike open source standards. It's a career!

Warnings

Unicode support in Python, and in Python 3.0,
Is about the best you will find, including codecs
classes. Unicode will still be a problem.

Expect programs to become less reliable as
odd Unicode mangles display layouts.

Unicode support != Localization. You will still
use gettext().

Add some test cases with odd language inputs.

Links

* Wikipedia
* http://en.wikipedia.org/wiki/Unicode
— Some general Unicode information
— Note that even the 'talk' page has 70 entries
- Primary Wikipedia unicode article is in Russian.

* Oddly, no English language videos explaining
Unicode are available on YouTube (as of today).

Links

* Advanced Python (or Understanding Python)
Video (again)

* http://video.google.com/videoplay?
docid=7760178035196894549

— At 1:04:32, it discusses Python 2.x unicode for ten
minutes.

- Recommends not to mix Ascii and Unicode.

Noftes

* Python 3.0 uses Unicode strings

— All “strings” become unicode strings.

— ByteArray replaces the current strings

- “Hello” is unicode, b’He

— They do not mix implicit

l0” is five ASCII bytes.
y. This is good.

E m

SR X m:u_ 3000

* Incremental not Revolutionary
* Need to read old code

* Available as Alpha (3.02a)

* Guido exercises restraint

Function Annotations PEP-3107
create map(x: “in map units”,

y: “1n map units”,

walls: “2D boolean array (X by vy)
with True meaning a wall”,

pixel width: “number of pixels per
map unit”) -> “Graphical PNG map”

random map(x: Coord, y: Coord) ->
Image:

notes

* Notice that many features will be of
controversial value.

- Some, like PEP 3107, will allow code bases to
implement very different and incompatible styles.

- Some, like PEP 3129, were added with little
discussion.

— Unclear that Python 3.0 code will be more elegant
than Python 2.5.

notes

* Code must be reread and retested

— Changes, like the printing of long numbers as
strings losing the trailing 'L', will require review of all
code to avoid subtle bugs.

* 2to3 tool aids conversion, handling mechanical
changes

* Download Latest Version (3.02a today)

* http://www.python.org/download/releases/3.0/
— It's starting to gel and solidify. Expect 2008.

Libraries

notes

* One can explore any set of libraries, I'm using
imaging libraries as an example.

* See Python 3D Software Collection
* http://www.vrplumber.com/py3d.py

— A list of various 3D packages and games in Python

— Good starting place with too few reviews

— Note how wildly libraries vary in quality

Python Imaging
Library
(PIL)

* Reads and Writes Image Formats
* Rock solid with 250 formats
* Interactive image manipulation

* Not all 'batteries included'.

Python Imaging Library

Image
im = Image.open(“cool.jpg”)
im = 1m.resize(128,128).rotate(90)

im.save(*“cool.png”)

(r,g,b) = im.split()
(X,Y) = 1m.size

im.show()

Noftes

* The PIL by Pythonware

* http://www.pythonware.com/products/pil/

— Tutorial should be sufficient documentation for most
users. lIt's about a page or so.

— The handbook is the complete documentation.
- Free is the same version as commercial support

— Last updated in December 2006, releases about
once per year.

* Easy 2D Game Engine
* Aggressively cross platform
* Continuous contests

* Sometimes static |= static

Frinkinc-7 pyBomBer

I.I.
il oo
e 8600

e $80 8 A %
Vv ol sl g i e

A T, T, 0 i, 0 S

Noftes

* Complete but small 2D game engine with
drawing, sounds, joysticks, sprites, etc.

— Works on all sorts of smaller devices.
* Last release was August, 2005

— Various forks for devices, odd integrations, etc.
— Huge fan base.

— Very stable core

Links

* PyGame
* http://www.pygame.org

— This has samples, tutorials, and all documentation

* "Beginning Game Development with Python
and Pygame: From Novice to Professional”,
2007

* http://www.amazon.com/gp/product/1590598725

* Full 3D Game Engine (almost)
* Uses Pyrex for linking modules
* Slow and forked with PySoy

* Avoid Python centric bias

Noftes

* The main Soya site:
* http://home.gna.org/oomadness/en/soya3d/index.html
* The main PySoy (spin-off) sites:

* http://www.pysoy.org
* http://www.soya3d.org/

- FAQ recommends against PySoy use yet

* Only about a dozen games using either fork

Noftes

* Includes graphics, sound, physics, and
networking

* Pyrex is a Python variant with C Datatypes

* www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex

* Soya is assembled on several libraries from
different sources.

* Game Engine From Wrappings

* Uses Py++ to make Python
bindings

* OGRE is popular

* Sometimes a “Mash-up” is best

Rendering (OGRE 3d + Forests/sky/terrain)
/O (Object Oriented Input System or OIS)
GUI (Crazy Eddie GUI & Navi & BetaGUI)
Sound (OgreAL & Plib + Noise)

Physics (NxOgre / PhysX, OgreODE / ODE,
OgreNewt / Newton, OgreBullet / Bullet)

Networking (Plib)
Video (Theora, OgreDshow, ffmpeg)

Noftes

* Python Ogre was originally named PyOgre
- PyOGRE just wrapped OGRE.

— To find good answers, you may need to check three
forums: Python-OGRE, PyOgre, and OGRE.

* OGRE Handles scenes, lighting, object
placement. Not game mechanics.

* OGRE spawned many separate projects for
game mechanics.

Noftes

* OGRE is basis for several commercial games

* Py++ is another wrapping engine for C++ Code

- http://www.language-binding.net/pyplusplus/pyplusplus.html
- Py++ wrapping is an automatic process.

— Handles APl changes quickily.

Links

* Python Ogre site
* http://python-ogre.org/
* The main OGRE site.
* http://www.ogre3d.org/
* The Two Wikis

* http://wiki.python-ogre.org/index.php/Main_Page
* http://www.ogre3d.org/wiki/index.php/PyOgre

notes

* Frameworks are what libraries morph into when
they grow huge.

* Frameworks generally want control. You call a
framework and it calls your code. Libraries
want you to call them

* Using multiple libraries in an application is easy
while using multiple frameworks is significantly
harder.

Web Application
Frameworks

* Piece of History. Picture is cover of:

— Phil and Alex's Guide to Web Publishing
* http://philip.greenspun.com/panda/

* http://www.amazon.com/Philip-Alexs-Guide-Web-
Publishing/dp/1558605347
— Phil Greenspun wrote this coffee table book full of
photos, which also showed how to build a solid
database backed web site using TCL and Oracle.

* Deploy Web Applications
* Pile of Parts
* Dozens of Choices

* Indecision Breeds Religious
Arguments

SECURITY

TESTING

PYTHON

&, y

URL REWRITE SERVER

OBJECT/RELATIONAL MAPPING

DATABASE

IDENTITY

notes

* That's a lot of components!

— Each component represents its own field.

- Total number of lines of code is immense

* Wikipedia is your friend for overviews

* http://en.wikipedia.org/wiki/Web_application_framework

* http://en.wikipedia.org/wiki/Comparison_of web_applicati
on_frameworks

notes

* Note that language has shifted over time.

- In the 1980's, these were called "Database Backed
Websites"

— In the 1990's, these were called "Application
Servers", then "Web Application Servers"

— In the 2000's, these are called "Web Application
Frameworks"

* Still same basic issues, with better parts.

reviews

* Comparison by James Cooley

* http://james.cooley.ie/2007/03/05/django_turbogears_rail
s_and_the feature curve.html

- Written back in March, 2007

— Short comparison of frameworks, along with Ruby
on Rails

— Basically recommends Django when you control the
environment and either TurboGears or Pylons when
you are integrating existing components.

reviews

* Neil Blakely-Milner's comparison

* http://tinyurl.com/2v4p2a

— Another comparison Written in June, 2007

— Recommends Django for smaller projects

* Scalable Since 1995
* Full web based interface
* Zope 2 and Zope 3

* Success Is its own reward

SECURITY

TESTING

PYTHON

&, y

URL REWRITE SERVER

OBJECT/RELATIONAL MAPPING

DATABASE

IDENTITY

MéﬁOPEN@) URL REWRITE =
{TESTlNG @ZOPE @ZOPE
PYTHON -
& @©ZOPE

| |
OBJECT/RELATIONAL MAPPING

o |
@ZOPE
DATABASE IDENTITY

notes

* See also:

* http://en.wikipedia.org/wiki/Zope
* http://www.zope.org/
* http://www.zopelabs.com/
* http://wiki.zope.org/WikiZopeOrg
— Note the major disparate sets of Zope 2 and Zope 3
pages

* Many Zope Books published, all over two years
ago.

* Emphasis on Don't Repeat
Yourself (DRY)

* Interactive console
* Unfortunate naming, e.g., MVC

* Gonfusion Comes From Names

SECURITY

TESTING

PYTHON

&, y

URL REWRITE SERVER

OBJECT/RELATIONAL MAPPING

DATABASE

IDENTITY

SECURITY

CACHE

django

APACHE,

django

)

TESTING

&,

URL REWRITE ==V ==!

PYTHON H
‘[djang

Mﬁ \ \
WELA“ONAL MAPPING
django-

o~

DATABASE

IDENTITY

I

&)

Noftes

* Naming
- MVC language in Django is "Model-Template-View"
— The 'D'is silent in Django
— Most top Google hits will be to a musician

* Informal extra reviews

— Great, fast development if you stay within the lines

— Extending Django feels like “struggling in
straightjacket”

lINnks

* Wikipedia Overview
* http://en.wikipedia.org/wiki/Django_(web_framework)
* Main Django Site

* http://www.djangoproject.com/

books

* "The Definitive Guide to Django: Web Development Done
Right", December 2007

- http://www.amazon.com/Definitive-Guide-Django-Development-
Right/dp/1590597257/

* "Professional Python Frameworks: Web 2.0
Programming with Django and Turbogears (Programmer
to Programmer)", 2007

— http://www.amazon.com/Professional-Python-Frameworks-
Programming-Turbogears/dp/0470138092

* “Sams Teach Yourself Django in 24 Hours", expected
March 2008

— http://www.amazon.com/Sams-Teach-Yourself-Django-
Hours/dp/067232959X

* Assembled from more parts

* More screencasts

* Still fairly young

* Qutreach Makes People Happy

SECURITY

TESTING

&,

OBJECT/RE | MAPPIN

| L’Objec

DATABASE

-

IDENTITY

notes

* TurboGears is rumored to be being reimplented
using Pylons as a foundation.

* Wikipedia Overview

— http://en.wikipedia.org/wiki/TurboGears
* Main Site

— http://turbogears.org/

books

- "Rapid Web Applications with TurboGears: Using
Python to Create Ajax-Powered Sites", November
2006

* http://www.amazon.com/Rapid-Web-Applications-
TurboGears-Ajax-Powered/dp/0132433885

- "Professional Python Frameworks: Web 2.0
Programming with Django and Turbogears
(Programmer to Programmer)”, 2007

* http://www.amazon.com/Professional-Python-
Frameworks-Programming-Turbogears/dp/0470138092

Pylons

* Reimplements Ruby on Rails
* Lots of Code Generators

* Flexibly Assembled with Python
Paste

< Flexibility has its limits

notes

* So flexible, | can't even tell you what modules
are used or included.

* Really a paste for assembling custom web
application servers.

* Many audience members suggest I'm unfairly
harsh about its maturity.

lINnks

* Wikipedia Overview
* http://en.wikipedia.org/wiki/Pylons
* Main Site
* http://pylonshg.com/
* Walk-through of building first Pylons site

* http://www.rexx.com/~dkuhlman/pylons_quick_site.html

Content
Management
. Systems

* Web Site Publishing
* On top of Web Application Servers

* One Serious Choice
* Great When It Just Works!

notes

* Extends application server to include workflow,
more user management, versioning, and
testing sample audiences.

* Used for those who need to keep a web site
running with fresh content.

* Some web frameworks try to add “CMS”
modules.

Plone

* Built on Zope
* Strong Support Base

* Archetypes and Extendable
Content Types

* Right Design Helps a Lot

notes

— Wikipedia Overview

* http://en.wikipedia.org/wiki/Plone_(content_management
_system)

- Main Site
* http://plone.org/
— The Plone Network advocacy/referral site
* http://plone.net/
— San Francisco Plone Users Group (Plone Lounge)

* http://www.plonelounge.com/

Finished!

* Keep Exploring Python
* Wikipedia is Your Friend
* Ignore Version Numbers

* Learn until you are dead and
buried.

notes

* This talk covered some of the squares of the
large quilt that is Python.

* The “Cheese Shop” global Python modules list
— http://pypi.python.org
* The CheeseRater module ratings

— http://www.cheeserater.com

Summary

Charles Merriam

Phone: 408.368.6050

Email: charles.merriam@gmail.com
Blog: charlesmerriam.com/blog

Slides and Notes: charlesmerriam.com/talk

Photo credits

Snakes on my head by O Pish Post
http://flickr.com/photos/opishposh/221395779/

Running Away by Ozyman
http://flickr.com/photos/ozyman/148793655/

Meta Mini Moo by Darkmatter
http://flickr.com/photos/cdm/1410539606/

Jagwangsa 3000 Buddha by Bebouchard
http://flickr.com/photos/bebouchard/404576063/

Unicode Eyechart in Firefox 2 by sillygwalio
http://flickr.com/photos/sillygwailo/543388337/

Vitamin E Redux by Selva
http://flickr.com/photos/selva/7737130/

Carry on up the Pylon by Arkadyevna
http://flickr.com/photos/arkadyevna/246047088/

Trains and Messes by Martin Kelley
http://flickr.com/photos/martin_kelley/408474778/

My Eye by OrangeAcid
http://flickr.com/photos/orangeacid/234358923/

Code Washing by Ezu
http://flickr.com/photos/ezu/277341190/

My New Mupal Tools by animaux
http://flickr.com/photos/animaux/103725084/

A "Few" Balloons by Mortimer
http://flickr.com/photos/mortimer/127194972/

Finished Quilt by Annette Pedrosian

http://flickr.com/photos/annettepedrosian/437261669/

Library by Swenwerk
http://flickr.com/photos/svenwerk/248594239/

behind... by Thomas23
http://flickr.com/photos/livenow/185186715/

Phil & Alex by Phil Greenspun

Lots of Plone Folk by MrTopF
http:/flickr.com/photos/mrtopf/1543890810/

Dark Side of the Moon by Callumalden
http://flickr.com/photos/callumalden/48953166/

